Default pipeline¤
Default pipeline.
Pipeline
¤
Pipeline for training a Sparse Autoencoder on TransformerLens activations.
Includes all the key functionality to train a sparse autoencoder, with a specific set of hyperparameters.
Source code in sparse_autoencoder/train/pipeline.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
|
autoencoder: LitSparseAutoencoder = autoencoder
instance-attribute
¤
Sparse autoencoder to train.
cache_names: list[str] = cache_names
instance-attribute
¤
Names of the cache hook points to use in the source model.
layer: int = layer
instance-attribute
¤
Layer to stope the source model at (if we don't need activations after this layer).
log_frequency: int = log_frequency
instance-attribute
¤
Frequency at which to log metrics (in steps).
n_components: int
property
¤
Number of source model components the SAE is trained on.
n_input_features: int = n_input_features
instance-attribute
¤
Number of input features in the sparse autoencoder.
n_learned_features: int = n_learned_features
instance-attribute
¤
Number of learned features in the sparse autoencoder.
progress_bar: tqdm | None
instance-attribute
¤
Progress bar for the pipeline.
source_data: Iterator[TorchTokenizedPrompts] = iter(source_dataloader)
instance-attribute
¤
Iterable over the source data.
source_dataset: SourceDataset = source_dataset
instance-attribute
¤
Source dataset to generate activation data from (tokenized prompts).
source_model: HookedTransformer | DataParallelWithModelAttributes[HookedTransformer] = source_model
instance-attribute
¤
Source model to get activations from.
total_activations_trained_on: int = 0
class-attribute
instance-attribute
¤
Total number of activations trained on state.
__init__(autoencoder, cache_names, layer, source_dataset, source_model, n_input_features, n_learned_features, run_name='sparse_autoencoder', checkpoint_directory=DEFAULT_CHECKPOINT_DIRECTORY, log_frequency=100, num_workers_data_loading=0, source_data_batch_size=12)
¤
Initialize the pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
autoencoder |
LitSparseAutoencoder
|
Sparse autoencoder to train. |
required |
cache_names |
list[str]
|
Names of the cache hook points to use in the source model. |
required |
layer |
NonNegativeInt
|
Layer to stope the source model at (if we don't need activations after this layer). |
required |
source_dataset |
SourceDataset
|
Source dataset to get data from. |
required |
source_model |
HookedTransformer | DataParallelWithModelAttributes[HookedTransformer]
|
Source model to get activations from. |
required |
n_input_features |
int
|
Number of input features in the sparse autoencoder. |
required |
n_learned_features |
int
|
Number of learned features in the sparse autoencoder. |
required |
run_name |
str
|
Name of the run for saving checkpoints. |
'sparse_autoencoder'
|
checkpoint_directory |
Path
|
Directory to save checkpoints to. |
DEFAULT_CHECKPOINT_DIRECTORY
|
log_frequency |
PositiveInt
|
Frequency at which to log metrics (in steps) |
100
|
num_workers_data_loading |
NonNegativeInt
|
Number of CPU workers for the dataloader. |
0
|
source_data_batch_size |
PositiveInt
|
Batch size for the source data. |
12
|
Source code in sparse_autoencoder/train/pipeline.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
generate_activations(store_size)
¤
Generate activations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
store_size |
PositiveInt
|
Number of activations to generate. |
required |
Returns:
Type | Description |
---|---|
TensorActivationStore
|
Activation store for the train section. |
Raises:
Type | Description |
---|---|
ValueError
|
If the store size is not divisible by the batch size. |
Source code in sparse_autoencoder/train/pipeline.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
run_pipeline(train_batch_size, max_store_size, max_activations, validation_n_activations=1024, validate_frequency=None, checkpoint_frequency=None)
¤
Run the full training pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_batch_size |
PositiveInt
|
Train batch size. |
required |
max_store_size |
PositiveInt
|
Maximum size of the activation store. |
required |
max_activations |
PositiveInt
|
Maximum total number of activations to train on (the original paper used 8bn, although others have had success with 100m+). |
required |
validation_n_activations |
PositiveInt
|
Number of activations to use for validation. |
1024
|
validate_frequency |
PositiveInt | None
|
Frequency at which to get validation metrics. |
None
|
checkpoint_frequency |
PositiveInt | None
|
Frequency at which to save a checkpoint. |
None
|
Source code in sparse_autoencoder/train/pipeline.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
|
save_checkpoint(*, is_final=False)
¤
Save the model as a checkpoint.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
is_final |
bool
|
Whether this is the final checkpoint. |
False
|
Returns:
Type | Description |
---|---|
Path
|
Path to the saved checkpoint. |
Source code in sparse_autoencoder/train/pipeline.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
|
train_autoencoder(activation_store, train_batch_size)
¤
Train the sparse autoencoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
activation_store |
TensorActivationStore
|
Activation store from the generate section. |
required |
train_batch_size |
PositiveInt
|
Train batch size. |
required |
Returns:
Type | Description |
---|---|
None
|
Number of times each neuron fired, for each component. |
Source code in sparse_autoencoder/train/pipeline.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
validate_sae(validation_n_activations)
¤
Get validation metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
validation_n_activations |
PositiveInt
|
Number of activations to use for validation. |
required |
Source code in sparse_autoencoder/train/pipeline.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
|