Neuron fired count metric¤
Neuron fired count metric.
NeuronFiredCountMetric
¤
Bases: Metric
Neuron activity metric.
Example
metric = NeuronFiredCountMetric(num_learned_features=3) learned_activations = torch.tensor([ ... [1., 0., 1.], # Batch 1 (single component): learned features (2 active neurons) ... [0., 0., 0.] # Batch 2 (single component): learned features (0 active neuron) ... ]) metric.forward(learned_activations) tensor([1, 0, 1])
Source code in sparse_autoencoder/metrics/train/neuron_fired_count.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
__init__(num_learned_features, num_components=None)
¤
Initialise the metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_learned_features |
PositiveInt
|
Number of learned features. |
required |
num_components |
PositiveInt | None
|
Number of components. |
None
|
Source code in sparse_autoencoder/metrics/train/neuron_fired_count.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
compute()
¤
Compute the metric.
Source code in sparse_autoencoder/metrics/train/neuron_fired_count.py
76 77 78 |
|
update(learned_activations, **kwargs)
¤
Update the metric state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
learned_activations |
Float[Tensor, names(BATCH, COMPONENT_OPTIONAL, LEARNT_FEATURE)]
|
The learned activations. |
required |
**kwargs |
Any
|
Ignored keyword arguments (to allow use with other metrics in a collection). |
{}
|
Source code in sparse_autoencoder/metrics/train/neuron_fired_count.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|