Sparse Autoencoder loss¤
Sparse Autoencoder loss.
SparseAutoencoderLoss
¤
Bases: Metric
Sparse Autoencoder loss.
This is the same as composing L1AbsoluteLoss() * l1_coefficient + L2ReconstructionLoss()
. It
is separated out so that you can use all three metrics (l1, l2, total loss) in the same
MetricCollection
and they will then share state (to avoid calculating the same thing twice).
Source code in sparse_autoencoder/metrics/loss/sae_loss.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
keep_batch_dim: bool = keep_batch_dim
instance-attribute
property
writable
¤
Whether to keep the batch dimension in the loss output.
__init__(num_components=1, l1_coefficient=0.001, *, keep_batch_dim=False)
¤
Initialise the metric.
Source code in sparse_autoencoder/metrics/loss/sae_loss.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
compute()
¤
Compute the metric.
Source code in sparse_autoencoder/metrics/loss/sae_loss.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
forward(source_activations, learned_activations, decoded_activations)
¤
Forward pass.
Source code in sparse_autoencoder/metrics/loss/sae_loss.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
update(source_activations, learned_activations, decoded_activations, **kwargs)
¤
Update the metric.
Source code in sparse_autoencoder/metrics/loss/sae_loss.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|