The Sparse Autoencoder Model¤
The Sparse Autoencoder Model.
ForwardPassResult
¤
Bases: NamedTuple
SAE model forward pass result.
Source code in sparse_autoencoder/autoencoder/model.py
66 67 68 69 70 71 72 73 74 75 |
|
SparseAutoencoder
¤
Bases: Module
Sparse Autoencoder Model.
Source code in sparse_autoencoder/autoencoder/model.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
|
config: SparseAutoencoderConfig = config
instance-attribute
¤
Model config.
decoder: UnitNormDecoder = UnitNormDecoder(learnt_features=config.n_learned_features, decoded_features=config.n_input_features, n_components=config.n_components)
instance-attribute
¤
Decoder.
encoder: LinearEncoder = LinearEncoder(input_features=config.n_input_features, learnt_features=config.n_learned_features, n_components=config.n_components)
instance-attribute
¤
Encoder.
geometric_median_dataset: Float[Tensor, Axis.names(Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE)]
instance-attribute
¤
Estimated Geometric Median of the Dataset.
Used for initialising :attr:tied_bias
.
post_decoder_bias: TiedBias = TiedBias(self.tied_bias, TiedBiasPosition.POST_DECODER)
instance-attribute
¤
Post-Decoder Bias.
pre_encoder_bias: TiedBias = TiedBias(self.tied_bias, TiedBiasPosition.PRE_ENCODER)
instance-attribute
¤
Pre-Encoder Bias.
reset_optimizer_parameter_details: list[ResetOptimizerParameterDetails]
property
¤
Reset optimizer parameter details.
Details of the parameters that should be reset in the optimizer, when resetting dictionary vectors.
Returns:
Type | Description |
---|---|
list[ResetOptimizerParameterDetails]
|
List of tuples of the form |
list[ResetOptimizerParameterDetails]
|
reset (e.g. encoder.weight), and |
tied_bias: Float[Parameter, Axis.names(Axis.BATCH, Axis.COMPONENT_OPTIONAL, Axis.INPUT_OUTPUT_FEATURE)] = Parameter(torch.empty(tied_bias_shape))
instance-attribute
¤
Tied Bias Parameter.
The same bias is used pre-encoder and post-decoder.
__init__(config, geometric_median_dataset=None)
¤
Initialize the Sparse Autoencoder Model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
SparseAutoencoderConfig
|
Model config. |
required |
geometric_median_dataset |
Float[Tensor, names(COMPONENT_OPTIONAL, INPUT_OUTPUT_FEATURE)] | None
|
Estimated geometric median of the dataset. |
None
|
Source code in sparse_autoencoder/autoencoder/model.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
forward(x)
¤
Forward Pass.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Float[Tensor, names(BATCH, COMPONENT_OPTIONAL, INPUT_OUTPUT_FEATURE)]
|
Input activations (e.g. activations from an MLP layer in a transformer model). |
required |
Returns:
Type | Description |
---|---|
ForwardPassResult
|
Tuple of learned activations and decoded activations. |
Source code in sparse_autoencoder/autoencoder/model.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
get_single_component_state_dict(state, component_idx)
staticmethod
¤
Get the state dict for a single component.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
SparseAutoencoderState
|
Sparse Autoencoder state. |
required |
component_idx |
NonNegativeInt
|
Index of the component to get the state dict for. |
required |
Returns:
Type | Description |
---|---|
dict[str, Tensor]
|
State dict for the component. |
Raises:
Type | Description |
---|---|
ValueError
|
If the state dict doesn't contain a components dimension. |
Source code in sparse_autoencoder/autoencoder/model.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
|
initialize_tied_parameters()
¤
Initialize the tied parameters.
Source code in sparse_autoencoder/autoencoder/model.py
187 188 189 190 |
|
load(file_path, component_idx=None)
staticmethod
¤
Load the model from a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path |
FILE_LIKE
|
Path to load the model from. |
required |
component_idx |
PositiveInt | None
|
If loading a state dict from a model that has been trained on multiple
components (e.g. all MLP layers) you may want to to load just one component. In this
case you can set |
None
|
Returns:
Type | Description |
---|---|
SparseAutoencoder
|
The loaded model. |
Source code in sparse_autoencoder/autoencoder/model.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|
load_from_hugging_face(file_name, repo_id, component_idx=None)
staticmethod
¤
Load the model from Hugging Face.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_name |
str
|
File name of the .pt state file. |
required |
repo_id |
str
|
ID of the repo to load the model from. |
required |
component_idx |
PositiveInt | None
|
If loading a state dict from a model that has been trained on multiple
components (e.g. all MLP layers) you may want to to load just one component. In this
case you can set |
None
|
Returns:
Type | Description |
---|---|
SparseAutoencoder
|
The loaded model. |
Source code in sparse_autoencoder/autoencoder/model.py
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
|
load_from_wandb(wandb_artifact_name, component_idx=None)
staticmethod
¤
Load the model from wandb.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
wandb_artifact_name |
str
|
Name of the wandb artifact to load the model from (e.g. "username/project/artifact_name:version"). |
required |
component_idx |
PositiveInt | None
|
If loading a state dict from a model that has been trained on multiple
components (e.g. all MLP layers) you may want to to load just one component. In this
case you can set |
None
|
Returns:
Type | Description |
---|---|
SparseAutoencoder
|
The loaded model. |
Source code in sparse_autoencoder/autoencoder/model.py
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
post_backwards_hook()
¤
Hook to be called after each learning step.
This can be used to e.g. constrain weights to unit norm.
Source code in sparse_autoencoder/autoencoder/model.py
215 216 217 218 219 220 |
|
reset_parameters()
¤
Reset the parameters.
Source code in sparse_autoencoder/autoencoder/model.py
192 193 194 195 196 197 |
|
save(file_path)
¤
Save the model config and state dict to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path |
Path
|
Path to save the model to. |
required |
Source code in sparse_autoencoder/autoencoder/model.py
250 251 252 253 254 255 256 257 258 |
|
save_to_hugging_face(file_name, repo_id, directory=DEFAULT_TMP_DIR, hf_access_token=None)
¤
Save the model to Hugging Face.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_name |
str
|
Name of the file (e.g. "model-something.pt"). |
required |
repo_id |
str
|
ID of the repo to save the model to. |
required |
directory |
DirectoryPath
|
Directory to save the model to. |
DEFAULT_TMP_DIR
|
hf_access_token |
str | None
|
Hugging Face access token. |
None
|
Source code in sparse_autoencoder/autoencoder/model.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
|
save_to_wandb(artifact_name, directory=DEFAULT_TMP_DIR)
¤
Save the model to wandb.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
artifact_name |
str
|
A human-readable name for this artifact, which is how you can identify this artifact in the UI or reference it in use_artifact calls. Names can contain letters, numbers, underscores, hyphens, and dots. The name must be unique across a project. Example: "sweep_name 1e9 activations". |
required |
directory |
DirectoryPath
|
Directory to save the model to. |
DEFAULT_TMP_DIR
|
Returns:
Type | Description |
---|---|
str
|
Name of the wandb artifact. |
Raises:
Type | Description |
---|---|
ValueError
|
If wandb is not initialised. |
Source code in sparse_autoencoder/autoencoder/model.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
SparseAutoencoderConfig
¤
Bases: BaseModel
SAE model config.
Source code in sparse_autoencoder/autoencoder/model.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
n_components: PositiveInt | None = None
class-attribute
instance-attribute
¤
Number of source model components the SAE is trained on.""
This is useful if you want to train the SAE on several components of the source model at once.
If None
, the SAE is assumed to be trained on just one component (in this case the model won't
contain a component axis in any of the parameters).
n_input_features: PositiveInt
instance-attribute
¤
Number of input features.
E.g. d_mlp
if training on MLP activations from TransformerLens).
n_learned_features: PositiveInt
instance-attribute
¤
Number of learned features.
The initial paper experimented with 1 to 256 times the number of input features, and primarily used a multiple of 8.
SparseAutoencoderState
¤
Bases: BaseModel
SAE model state.
Used for saving and loading the model.
Source code in sparse_autoencoder/autoencoder/model.py
53 54 55 56 57 58 59 60 61 62 63 |
|